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Abstract

We describe a new, least-error method for locating a discrete acoustic source (which gen-

erates a radially symmetric, outgoing wave) based on time-of-arrival data. This method local-

izes the source by minimizing the sum of the absolute values of the differences between the

squares of the theoretical and actual times of arrival. The method is suited to noisy data,

and whenever the errors in the data are unbiased, the more times of arrival used, the greater

the expected accuracy of localization. The method is simplest for two dimensional data,

requiring only elementary algebra. By means of simulations, we demonstrate the amelioration

of localization with the number of times of arrival employed: the average inaccuracy falls

asymptotically as the reciprocal of the square root of this number. The new method also

yielded more accurate localization, on the average, than a least-square method. We make

direct comparison with time-difference-of-arrival localizations, both for simulated data and

for experimental data collected at a shooting range, demonstrating the favorability of the

new method. We also demonstrate its facilitation of the localization of multiple, cotemporary

sources: via partitioning of the data. Our method is suited to sensor networks with computa-

tionally empowered nodes.
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1. Introduction

Distributed sensor networks (DSN) have computationally empowered nodes and

may contain manifold sensors. DSNs have much potential for surveillance. An
advantageous preliminary exercise is implementing them for ‘‘discrete acoustic-

source localization’’, as ulterior aims are more challenging (cf. [13]).

Let a sensor network have S nodes at positions rs; s = 1,2, . . . ,S, each node com-

prising an acoustic sensor. Let there be a discrete sound source at position r and time

t, and, whence, an outgoing, radially symmetric, shock wave. Therefore, in the ideal,

the time-of-arrival at node s, ts = t + irs � ri/v; s = 1,2, . . . ,S, where v denotes the

velocity of sound, assumed constant, and where iwi denotes the Euclidean length

of the vector w.
The objective is to predict r and t based on the ts�s; thus, our formulation does not

apply to more sophisticated data, such as those collected by sensors determining the

source�s orientation [10]. As v is taken to be constant, we subsequently eliminate t�s in

favor of d ¼def vt and ds ¼
def vts; s ¼ 1; 2; . . . ; S. Therefore, for d 0 > d, the locus r 0(d 0) of

the wave is

d 0 � d ¼ kr0ðd 0Þ � rk. ð1Þ
In this ideal setting, enough ds�s should suffice for obtaining d and r, but how many?

S = 1 is essentially useless. In two spatial dimensions, geometrical considerations

yield that the locus of the spatial coordinates of the source is a hyperbola for

S = 2 (taking the difference of two (1)�s, for, say, r 0 and r00), two points for S = 3

(viz. Section 2.2) and one point for 4 6 S. In fact, S = 4 suffices, in the absence of

errors, to locate the source in (2-d) space and time; such a formulation is referred

to as the time-difference-of-arrival (TDOA) method [1,11] (cf. Appendix A). This

method is essential for GPS [7] and cell-phone localizations [15].
These elementary approaches are, however, plainly unsuitable for non-ideal data,

comprising, for instance, measurement errors and, also, the influences of impedi-

ments. Mitigation is afforded by least-error methods, which yield a solution r and

d by minimizing the sum, over all nodes, of ‘‘discrepancies’’ between the sides of

(1) [7,8,18]. When systematic errors have been eliminated, the accuracy of least-error

solutions should increase with S.

Herein we develop a new least-error method based on measuring discrepancies by

absolute values. Minimizing the sum of the absolute values of the ‘‘errors’’ was advo-
cated by Laplace [4, p. ix]. Minimizing the sum of these summands, instead of the sum

of the squares of the errors, better discounts outlying measurements. For select objec-

tives, such as the current one, it can be simpler, mathematically, to optimize the sum

of the absolute values of the errors – despite engendering discontinuous derivatives

[17]. Note that a natural least-square method requires finding the roots of a polyno-

mial of the sixth degree [8]. As described in Section 2, in two spatial dimensions, our
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least-error method requires only elementary algebraic methods – comparable to those

used by the TDOAmethod [11] (viz. Appendix A). The increased complexity required

for implementing the method three spatial dimensions is broached in Appendix B.

We apply our least-error methodology in Section 3. There, simulations demon-

strate the amelioration of localization afforded by increasing the number of nodes;
its localization appears to be unbiased and to be more accurate than a comparable

least-square method [18] (viz. Section 3.1). We also compare its performance with

that of the TDOA method: using four nodes in a plane, both with simulated data

and with experimental data. We also demonstrate the facilitation, by our method,

of the localization of multiple, cotemporary discrete sources.
2. Source localization in two spatial dimensions

In this section we describe our methods, specialized to localization within a plane.

Let there be given S nodes with their measured positions denoted by rs = (xs,ys);

s = 1,2, . . . ,S. The source is assumed to emit a cylindrical wave – emanating from

r = (x,y) ‘‘at’’ d. The data recorded at the nodes are the respective ds�s;
s = 1,2, . . . ,S; from these one determines r and d.

Our measure of the ‘‘discordance’’ of the data, given x,y and d, is

Dðx; y;dÞ ¼def
XS

s¼1

wsjðx� xsÞ2 þ ðy � ysÞ
2 � ðd � dsÞ2j; ð2Þ

where the ws�s, introduced for sake of generality, are positive, real constants. The
main motivation for (2) is that it is easy to optimize. Candidate location(s) of the

source are x,y and d at the global minimum (minima) of D.
As the optimization of D is unconstrained, it is necessary for the first partial deriv-

atives of D to vanish at its global optimum – provided these derivatives exist. Recall

that the derivative of |f(x)| equals f 0(x) sgn(f(x)), with sgn(y) denoting the signum

function (taking values �1,0 and 1 depending on whether y 2 R is less than, equal

to or greater than zero, respectively). This derivative exists when f(x) 6¼ 0 or

f 0(x) = 0. Therefore, at a stationary point of (2):

oD
ox

¼ 2
XS

s¼1

wsðx� xsÞsgns ¼ 0;

oD
oy

¼ 2
XS

s¼1

wsðy � ysÞsgns ¼ 0;

oD
od

¼ �2
XS

s¼1

wsðd � dsÞsgns ¼ 0;

where sgns denotes sgn((x � xs)
2 + (y � ys)

2 � (d � ds)
2); s = 1,2, . . . ,S.

These partial derivatives are not defined at points where any sgns vanishes. When

no sgns vanishes, consideration of the second partial derivatives establishes that any

stationary point obtained by solving the foregoing system is a saddle point: never a
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minimum. To find the minima of D one must, therefore, confront some subtleties of

optimizing non-differentiable functions.

Upon reflection, minima of D are found to be restricted to manifolds in x,y,d-

space where one or more sgns vanish (the ones mentioned in Section 1). With such

restrictions, the foregoing derivatives are well defined (at loci where no additional
summands vanish), as one may clearly omit summands which vanish everywhere.

It is immediate that at least two sgns�s must vanish at a local minimum of D. Cases
with two vanishing sgns�s and three vanishing sgns�s are treated separately.

2.1. Two sgns’s zeroed (2-d)

Here we exhibit all the stationary points of D resulting when pairs of sgns�s are

zeroed. The global minimum must occur either at such points or at the stationary
points resulting from zeroing triples of sgns�s, described in Section 2.2.

Two Lagrange multipliers – k and l – facilitate finding the stationary points

resulting from zeroing two sgns�s: sgn‘ and sgnm, say, with ‘ 6¼ m. Therefore, consider

the stationary points of

~D ¼ Dþ kððx� x‘Þ2 þ ðy � y‘Þ
2 � ðd � d‘Þ2Þ þ lððx� xmÞ2 þ ðy � ymÞ

2

� ðd � dmÞ2Þ. ð3Þ
Here, ‘ is not equal to m, and, to obtain this class of stationary points, {‘,m} ranges

over all unordered pairs of indices from {1,2, . . . ,S}. Thus, given none of the

remaining sgns�s vanish, the following first partial derivatives exist:

o~D
ox

¼ 2
XS

s¼1

ðx� xsÞwssgns þ 2kðx� x‘Þ þ 2lðx� xmÞ ¼ 0;

o~D
oy

¼ 2
XS

s¼1

ðy � ysÞwssgns þ 2kðy � y‘Þ þ 2lðy � ymÞ ¼ 0;

o~D
od

¼ �2
XS

s¼1

ðd � dsÞwssgns � 2kðd � d‘Þ � 2lðd � dmÞ ¼ 0.

This system is composed of one linear equation in each unknown: x,y and d. k and l
will subsequently be selected to implement the two constraints sgn‘ = sgnm = 0. If
solution is feasible, then, this solution is a stationary point of D.

The foregoing three equations yield, respectively,

x ¼ nx þ kx‘ þ lxm
nþ kþ l

; y ¼ ny þ ky‘ þ lym
nþ kþ l

and d ¼ nd þ kd‘ þ ldm

nþ kþ l
;

denoting
PS

s¼1wssgns by n;
PS

s¼1xswssgns by nx;
PS

s¼1yswssgns by ny and
PS

s¼1dsws-

sgns by nd . Note that although the sgns�s are functions of the unknowns, one may

proceed by substituting each possible (�1,+1)-binary string of length S � 2 and

seeking self-consistency (substituting a solution, x,y and d, into the sgns�s;
s = 1,2, . . . ,S). Furthermore, the constraints yield two quadratic equations: one in

k and the other in l:
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ðnx � nxm þ kðx‘ � xmÞÞ2 þ ðny � nym þ kðy‘ � ymÞÞ
2

¼ ðnd � ndm þ kðd‘ � dmÞÞ2; ð4Þ

ðnx � nx‘ þ lðxm � x‘ÞÞ2 þ ðny � ny‘ þ lðym � y‘ÞÞ
2

¼ ðnd � nd‘ þ lðdm � d‘ÞÞ2. ð5Þ

It is easily seen that the roots of (4) and (5) share some key attributes:

k� ¼ ð�bk �
ffiffiffiffi
D

p
Þ=2a; ð6Þ

and

l� ¼ ð�bl �
ffiffiffiffi
D

p
Þ=2a; ð7Þ

where D denotes the discriminant common to these two equations, with

D=4 ¼ ððx‘ � xmÞðnd � ndmÞ � ðd‘ � dmÞðnx � nxmÞÞ2 þ ððy‘ � ymÞðnd � ndmÞ

� ðd‘ � dmÞðny � nymÞÞ
2 � ððx‘ � xmÞðny � nymÞ � ðy‘ � ymÞðnx � nxmÞÞ2;

where a = (x‘ � xm)
2 + (y‘ � ym)

2 � (d‘ � dm)
2 denotes the coefficient of the qua-

dratic term, also common to the two equations; and where bk and bl denote the

respective coefficients of the linear terms. Whenever D < 0, the Lagrange multipliers

are complex and the corresponding solutions cannot be stationary points [16, Theo-

rem 2.6].

For a stationary point (x,y,d) to be admissible, its components must all be finite.

When the denominator n + k + l vanishes, in all likelihood, some components are

infinite. Consider, for example, the linear system engendered under the assumption
that all are finite:

nx þ kx‘ þ lxm ¼ 0;

ny þ ky‘ þ lym ¼ 0;

nd þ kd‘ þ ldm ¼ 0.

ð8Þ

According to the fundamental theorem on overdetermined linear systems [6, vol. 7,

p. 52], this system will admit a solution (k,l) if and only if

Rank

x‘ xm
y‘ ym
d‘ dm

0
B@

1
CA ¼ Rank

x‘ xm nx
y‘ ym ny
d‘ dm nd

0
B@

1
CA.

Given the random measurement errors comprised, the rank of the left-hand matrix
will almost always be smaller than the rank of the right-hand matrix. Assuming these

ranks are unequal, the system (8) has no solution. Therefore, when the denominator

n + k + l vanishes, at least one of x,y and d will almost surely be infinite, and such

solutions may be ignored because they cannot yield a minimum value of D.
If additional sgns�s were to vanish at one of the foregoing stationary points, then

such points are not admitted to this class.
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2.2. Three sgns’s zeroed (2-d)

Note that, with noisy data, it should almost never be the case that more than three

sgns�s jointly vanish, and it is safe to ignore this potentiality. When zeroing three

sgns�s, the use of Lagrange multipliers leads to a system whose solution is cumber-
some, as corroborated by Appendix B, and, therefore, direct elimination is preferable.

As is the case with the stationary points resulting from zeroing pairs of sgns�s, zeroing
each triple will be seen to yield either zero, one or two stationary points of D.

Consider the following quadratic system:

ðx� x‘Þ2 þ ðy � y‘Þ
2 ¼ ðd � d‘Þ2; ð9Þ

ðx� xmÞ2 þ ðy � ymÞ
2 ¼ ðd � dmÞ2; ð10Þ

ðx� xnÞ2 þ ðy � ynÞ
2 ¼ ðd � dnÞ2; ð11Þ

where, ‘,m and n are distinct elements of {1,2, . . . ,S}. Taking the differences (9),
(10) and (9)–(11) yields two linear equations in x,y and d. This allows, say, y and

d to be expressed in the following forms:

y ¼ axþ b; ð12Þ

d ¼ cxþ d; ð13Þ
where

a ¼
x‘�xm
d‘�dm

� x‘�xn
d‘�dn

y‘�yn
d‘�dn

� y‘�ym
d‘�dm

;

b ¼ wm � wn
y‘�yn
d‘�dn

� y‘�ym
d‘�dm

;

c ¼ x‘ � xm
d‘ � dm

þ a
y‘ � ym
d‘ � dm

;

d ¼ b
y‘ � ym
d‘ � dm

þ wm;

with

wj ¼
x2j � x2‘ þ y2j � y2‘ þ d2

‘ � d2
j

2ðd‘ � djÞ
; j 2 fm; ng.

Safeguards against the vanishing (or near vanishing) of the denominators in the

expressions for the foregoing coefficients should be given consideration. Under

appropriate circumstances, one might want to implement the computation of the

‘‘limiting behavior’’, or, if necessary, extended floating-point arithmetic. For our
applications, described in Section 3, double precision sufficed.

Substituting (12) and (13) into (9) yields a quadratic equation in x:

ax2 þ bxþ c ¼ 0; ð14Þ
with
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a ¼ 1þ a2 � c2;

b ¼ �2ðx‘ � aðb� y‘Þ þ cðd� d‘ÞÞ and
c ¼ x2‘ þ ðb� y‘Þ

2 � ðd� d‘Þ2.
Solving (14) for x yields, when it is real, one or two stationary points (x,y,d).

2.3. Global minimization of D

Global minimization of D involves all pairs and triples of nodes: zeroing their

sgns�s. Respective stationary points are generated, as described above, and the min-

imum value of D over these stationary points is its global minimum.

For pairs of zeroed sgns�s, one ranges over
S
2

� �
pairs of indices. For each pair, one

must also range over the 2S� 2 possibilities for the nonzero sgns�s (to postulate the

n�s). For each pair and each choice, candidate stationary points are generated. These

may be admitted if: (i) their k and l 2 R, (ii) their sgns�s reproduce the postulated

sgns�s and (iii) no additional sgns�s vanish. Thus, the computation of these stationary

points involves the data from all nodes.

For triples of zeroed sgns�s, the stationary-point generation procedure is more

straightforward. One must range over the S
3

� �
triples of indices. For each triple,

one solves (14) and, the real roots yielding admissible stationary points without ref-

erence to the data from the remaining nodes; those data allow the ranking of the sta-

tionary points.
3. 2-d Applications of least-error methodology

In this Section, the ws�s are, for simplicity, taken equal to unity. In all of our appli-
cations, one x,y and d minimized D.

3.1. Localization errors as a function of S: comparison with LS

Consider a square of unit side with vertices (0,0), (0,1), (1,0) and (1,1) and a source

at its center, (1/2,1/2), emitting a cylindrical wave at d = 0. S nodes were indepen-

dently placed, uniformly and randomly, within the square. A random error, uniform

on [�.01, .01], was then added to the exact value of ds, independently; s = 1,2, . . . ,S.
First, x,y and d were obtained by application of the least-error method, described

in Section 2.1. Second, we obtained these by application of least-square techniques

based upon [18, Appendix B].1
1 For every pair of nodes, indexed by {‘,m}, with ‘ 6¼ m, one takes the difference of respective equations

obtained from (1): (x‘ � x)2 + (y‘ � y)2 = (d‘ � d)2, and (xm � x)2 + (ym � y)2 = (dm � d)2. This yields
S
2

� �
linear equations, whose least-square solution follows from their normal equations: three linear

equations in x,y and d [6, vol. 5, pp. 376–380]. (As with the least-error method, all weights equalled unity.).



Fig. 1. ÆRMSæ as a function of S; 4 6 S 6 16. Abscissa: 1 6 log(S) 6 3; Ordinate: log (ÆRMSæ). Results for

the least-error method are marked with diamonds; results for the least-square method are marked with

squares. In both cases, the asymptotic slope is �1/2.
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For both methods, we determined the respective average root-mean-square error:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1=2Þ2 þ ðy � 1=2Þ2 þ d2

q� �
; 4 6 S 6 16.

(Uniqueness of the global minimum would be unlikely for S < 4.) These averages are

plotted on logarithmic axes in Fig. 1.

Note that the average root-mean-square errors for both behaved asymptotically
as S�1/2, as these are the asymptotic slopes of the curves in Fig. 1. These results

are rationalized in Section 4. The magnitude of the average root-mean-square errors

also varied directly with the magnitude of the errors in the data.

3.2. Comparison with TDOA: simulation

In two dimensions, the TDOAmethod requires S = 4 [3,7,11,18] (viz. Appendix A).

Note that this approach always yields a solution, but that it is ill adapted to noise.
We compared the accuracies of TDOA solutions and the least-error method, ap-

plied to a data set simulated as described in Section 3.1. Table 1 contains some error

‘‘percentiles’’ for the two computations. For example, for the TDOA method, 75%

of the time, the root-mean-square (RMS) error,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr� r0k2 þ ðd � d0Þ2

q
, was less
Table 1

Error percentiles for root-mean-square localization (S = 4)

ÆRMSæ 25% 50% 75% 95%

TDOA – 0.008 0.014 0.035 0.218

Least-error 0.033 0.007 0.0099 0.0175 0.075



1270 D.C. Torney, R.J. Nemzek / Applied Acoustics 66 (2005) 1262–1277
than 0.035, whereas the corresponding value for the least-error method was 0.0175.

(The nought-subscripted indeterminates in this formula denote the ‘‘true values’’ and

the non-subscripted indeterminates the solution values.) Due to a ‘‘heavy tail’’ in the

TDOA results, its average RMS error, likely unbounded, could not be reliably esti-

mated, even in a large number of trials (>106).

3.3. Comparison with TDOA: experiment

Prior to developing our least-error methods, we implemented and tested a proto-

type TDOA acoustic-source localization network. For this test, six acoustic-sensor

nodes were arranged in two groups of three (whose members� locations are depicted
as +�s in Figs. 2(a) and (b)). The system was fielded at the Los Alamos National Lab-

oratory & Protective Technology Los Alamos firearms training facility. Each node
contained an acoustic sensor, a microprocessor, an inexpensive GPS receiver and

an RF transceiver. They jointly constituted a sensor network which autonomously

located gunshots using the TDOA method.

The on-board GPS receivers provided both a common timebase for the network

and the locations of the individual nodes. Inaccuracies in these positions, whose

RMS error was roughly 10 m and which was strongly correlated across nodes, were

the dominant errors in this setting. The time-of-arrival determination involved errors

of ±0.1 ms; multiplying by v establishes that these errors (�0.03 m) were much smal-
ler than the GPS errors, and additional errors were of comparably negligible magni-

tude.2 For instance, the latency of the acoustic sensors had a standard deviation of

approximately 0.05 ms, etc.

Each node performed a threshold detection of sound amplitude, recording the

arrival time of the cylindrical wavefront. The arrival times were then propagated

around the network using a flooding-style communications protocol. The first

node to receive four times of arrival (typically its own measurement and three

others) calculated the sound source position, using the TDOA algorithm detailed
in Appendix A [11]. The implemented communications algorithm typically sup-

pressed the transmission of the fourth time-of-arrival measurement: the one

belonging to the node which performed the TDOA calculation, using its own

measurement and that from three other nodes. Thus, to compare the TDOA

method to our least-error method, we first identified TDOA localizations which

could unambiguously be matched to a set of three measurements; then, from

the three, the fourth measurement was reconstructed, using the uniqueness of

the TDOA solution. These sets of four unambiguous measurements were analyzed
using both methods.

Fig. 2(a) depicts the results of the TDOA method. Two shots were located within

3 m of their true position by the TDOA method, but this approach predicted that the

majority of the shots occurred 10–30 m south of their true locations. As mentioned,
2 v was taken to equal 343 m/s for these experiments.



Fig. 2. (a) TDOA localizations using six nodes (+�s) and, for each gunshot, one quad of times of arrival.

Lanes (numbered squares) correspond to shooters; the lanes used were #�s 2,3,6 and 7. The predicted

coordinates for the gunshots for firings from each of these lanes are indicated by respective symbols. The

dimensions of the axes are in meters, and the x-axis is oriented east–west, whereas the y-axis is oriented

north–south; these are referenced to an arbitrary origin northwest of the plot. Note that the point from

lane three at (�6959,�862) is actually the superposition of two nearly identical predictions for coordinates

of two gunshots from lane three. (b) Least-error localizations, using the same nodes and combinations of

four times of arrival as in (a). The coordinate axes are also the same as in (a).
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discrepancies derive from GPS position error, variation in individual acoustic thresh-

old settings, dispersion of sound, etc.

Fig. 2(b) depicts the results of our least-error method. Almost all (eight of nine)

of the firings were located within 3 m of their true position by our least-error

method.



Table 2

The proportions of false positives in the below-threshold results for different numbers of nodes. False

positives were defined as those with the minimum, over all sources (r0; d0): ir � r0i2 + (d � d0)
2 > 0.02

S False positive rate

4 0.4

6 0.2

8 0.03
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3.4. Deconvolution of multiple sources

Least-error source localization may be also be used for the separation, or decon-

volution, of multiple sources. Recall that with multiple, sinusoidally varying, plane-

wave sources, established methods yield the parameter estimates for all sources based

upon measurements at the nodes [9]. To locate multiple cylindrical-wave ‘‘point

sources’’, based on times of arrival, constitutes a distinct challenge.

Were the times of arrival for multiple discrete sources received at the nodes, one
could proceed by perform the least-error analysis for each combination: using one

signal from each node. Thus, if there were ns signals detected at the sth node, then

the corresponding number of least-error calculations would be
QS

s ns. The minimum

values of D obtained should discriminate between true and artifactual sources, as it is

expected that invalid combinations should exhibit large discordances.3

To illustrate these considerations, we modified the simulations of Section 3.1 to

include three sources: at d0 = 0 and at (1/4,1/4), (1/2,1/2) and (3/4,3/4); ns = 3;

s = 1,2,3. Noise was added as above. Only those combinations of signals with min-
imum D < 0.03 were retained. (For other situations, alternative thresholds would

plainly be appropriate; this choice pertains to the noise level in our simulations

Oð0.01Þ.) The results of our simulations, involving S = 4,6 and 8, are as follows;

see Table 2.

For virtually all configurations of the nodes, all three sources were detected (and

from multiple signal combinations). Note that having sources emit at substantially

different d�s would decrease the false positive rates. In Fig. 3, the spatial coordinates

of the below-threshold results for S = 8 are depicted.
4. Discussion

The results of Section 3 illustrate various advantages of our least-error method

over other methods. For example, it accrued better average performance than a

least-square method, depicted in Fig. 1. Table 1 illustrates that our least-error meth-

od has higher accuracy than TDOA, when the data contain noise. Figs. 2(a) and (b)
demonstrate its practical merits.
3 This approach assumes most nodes records a time-of-arrival from each source. When this is not the

case, one could attempt omission of the nodes receiving the smallest numbers of times of arrival.



Fig. 3. The predicted spatial coordinates of the below-threshold (minimum D < 0.03) least-error solutions,

given three simultaneous sources, at d = 0, and (1/4,1/4), (1/2,1/2) and (3/4,3/4).

D.C. Torney, R.J. Nemzek / Applied Acoustics 66 (2005) 1262–1277 1273
A novel characteristic of our least-error method is that some of the discrepancies
(sgns�s) must vanish at the minimum. When fewer than the maximum number of

sgns�s vanish (these being three and four in two and three dimensions, respectively)

our implementation of the method has computational complexity exponential in the

number of nodes. It remains a challenge to attempt to circumvent the latter complex-

ity. On the other hand, for the maximum numbers of vanishing sgns�s, ours is evi-
dently a polynomial algorithm which could readily be implemented over the nodes

of a DSN. For some applications and for (yet to be determined) classes of noise, sim-

ply ranging over the latter stationary points and accepting the minimum value of D
may afford suitable source localization. The average performance for the simulations

of this manuscript would not noticeably change if the stationary points involving

two zeroed sgns�s were omitted.

By analogy to our DSN implementation of the TDOA method (cf. Section 3.3),

our least-error approaches for acoustic-source localization in two spatial dimensions

could also be implemented. Efficient communication protocols would need to be de-

vised. The optimal value of D provides an indication of the accuracy of a localiza-

tion, a basis for deciding whether to include the data from more nodes – or to
report the current localization. Such an implementation, coupled with the ability

of nodes to emit sound, would provide an alternative method for node localization.

For accessible S, the average RMS localization error of our method falls, asymp-

totically, as S�1/2, as illustrated in Fig. 1. This reflects the optimal spatial resolution

S sensors may afford. In detail, independent noise components contribute OðS1=2Þ to
D, but alterations to the unknowns yield (coherent) contributions OðSÞ. Therefore,
the scale of ‘‘spatial resolution’’ of the network cannot exceed their quotient:
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OðS�1=2Þ. It is no surprise that least-error methods achieve this limit because their op-

tima should fall within this ‘‘noise-limited’’ domain.

Due to dispersion, one might expect that an important component of the noise in

the ds�s will increase with the Euclidean distance from the source. Using the ws�s for
mitigation seems desirable, but it would greatly complicate the optimization of D be-
cause it would make the ws�s functions of the indeterminates. For many purposes it

may suffice to iterate: solving a sequence of optimizations – each iterate having con-

stant ws�s – based on the inferred r and d from the previous iteration. If, for example,

the standard deviation r‘ of j(x � x‘)
2 + (y � y‘)

2 � (d � d‘)
2jequals a known func-

tion of ir � r0i, then one might want to take ws = 1/rs; s = 1,2, . . . ,S. Convergence
of this procedure is not necessarily at issue, as one iteration could accrue greater

accuracy than the use of equal ws�s.
More sophisticated methods are plainly required for localization of a large num-

ber of cotemporary sources. ‘‘Time-slicing’’, with overlapping time intervals, is a

practical approach for reducing the ns�s. The slice length would engender ‘‘neighbor-

hoods’’ of nodes which could collaborate in source localization. One might, further-

more, effect the desired importance sampling of the signal combinations by means of

the Markov chain Monte Carlo method: transitioning between combinations in

accordance with the likelihood ratio for the data. A useful approximation yielding

the likelihood of the data could involve the inferred source coordinates. Such like

should be put to the test.
When there are two real roots of (6) and (7), forS = 2, or of (14), forS = 3, these solu-

tionsmay not, in general, be distinguished, even thoughonly one solution could pertain

to the source. Therefore, source localization requires either a different approach or lar-

ger values of S. This could, for some, inspire a higher regard for the sophistication of

many creatures, such as bats and dolphins, endowed with only two acoustic sensors

– but whose vocations (or avocations) employ echolocation [2,5,14,19].
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Appendix A. TDOA

Our definition of TDOA is derived from [11], which we reproduce for the conve-

nience of the reader, using the present notation. It originates from the system of four
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equations derived by squaring (1) for S = 4. Take the difference of one of these with

the other three, to obtain three linear equations in x,y and d. Eliminating d yields

two linear equations in x and y, and solve these. d is then obtained by substitution

of x and y. Here, dij denotes di � dj, xij denotes xi � xj and yij denotes yi � yj. In this

way we obtain

x ¼ B2C1 � B1C2

A1B2 � A2B1

; y ¼ A1C2 � A2C1

A1B2 � A2B1

;

d ¼
X4

i¼1

di �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xÞ2 þ ðyi � yÞ2

q� �
;

where

A1 ¼ d12x31 � d13x21; A2 ¼ d12x41 � d14x21;

B1 ¼ d12y31 � d13y21; B2 ¼ d12y41 � d14y21;

C1 ¼
1

2
½d13ðd2

12 þ x21 � x22 þ y21 � y22Þ � d12ðd2
13 þ x21 � x23 þ y21 � y23Þ�;

C2 ¼
1

2
d14ðd2

12 þ x21 � x22 þ y21 � y22Þ � d12ðd2
14 þ x21 � x24 þ y21 � y24Þ

� �
.

Further elaborations of TDOA are described in [1,7,18]. When the data are in exact,
the original system of four squared equations will not, in general, have a real solution

such as the TDOA solution.
Appendix B. Source localization in three spatial dimensions

This desideratum is very similar to that treated above, but here one seeks

r = (x,y,z) and d, and one has a spherical-wave source. The global optimum of
the respective D may occur with two, three or four sgns�s zeroed. For two sgns�s zer-
oed, an analysis analogous to that of Sections 2.1 and 2.3 suffices. For four sgns�s
zeroed, by taking differences, one may eliminate three variables, generating three lin-

ear equations. A quadratic equation in the remaining variable yields two candidate

solutions, as described in Section 2.2. As above, the cases with more than four sgns�s
zeroed may safely be neglected. Thus, only the case of zeroing three sgns�s remains, in

order to effect the global minimization of D.
B.1. Three sgns’s zeroed (3-d)

Here, using Lagrange multipliers k,l and m, we seek the stationary points of

~D ¼ Dþ kððx� x‘Þ2 þ ðy � y‘Þ
2 þ ðz� z‘Þ2 � ðd � d‘Þ2Þ þ lððx� xmÞ2

þ ðy � ymÞ
2 þ ðz� zmÞ2 � ðd � dmÞ2Þ þ mððx� xnÞ2 þ ðy � ynÞ

2

þ ðz� znÞ2 � ðd � dnÞ2Þ. ð15Þ
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The indices ‘,m and n are distinct, and, to exhaust this class of stationary points,

{‘,m,n} must range over all unordered triples of indices from {1,2, . . . ,S}. Thus, gi-
ven none of the remaining sgns�s vanish, we seek the stationary points as the solu-

tions of the system:

o~D
ox

¼ 2
XS

s¼1

ðx� xsÞwssgns þ 2kðx� x‘Þ þ 2lðx� xmÞ þ 2mðx� xnÞ ¼ 0;

o~D
oy

¼ 2
XS

s¼1

ðy � ysÞwssgns þ 2kðy � y‘Þ þ 2lðy � ymÞ þ 2mðy � ynÞ ¼ 0;

o~D
oz

¼ 2
XS

s¼1

ðz� zsÞwssgns þ 2kðz� z‘Þ þ 2lðz� zmÞ þ 2mðz� znÞ ¼ 0;

o~D
od

¼ �2
XS

s¼1

ðd � dsÞwssgns � 2kðd � d‘Þ � 2lðd � dmÞ � 2mðd � dnÞ ¼ 0.

This system comprises one linear equation in each unknown: x,y,z and d. k,l and m
will subsequently be selected to effect the three constraints sgn‘ = sgnm = sgnn = 0. As

above, denote
PS

s¼1wssgns by n;
PS

s¼1xswssgns by nx;
PS

s¼1yswssgns by ny ;
PS

s¼1zs-
wssgns by nz and

PS
s¼1dswssgns by nd . Then the foregoing four equations yield,

respectively,

x ¼ nx þ kx‘ þ lxm þ mxn
nþ kþ lþ m

; y ¼ ny þ ky‘ þ lym þ myn
nþ kþ lþ m

;

z ¼ nz þ kz‘ þ lzm þ mzn
nþ kþ lþ m

and d ¼ nd þ kd‘ þ ldm þ mdn

nþ kþ lþ m
.

Furthermore, the three constraints yield three quadratic forms: each in a pair of vari-
ables. These are unlikely to be definite, and the theory for such systems is rudimen-

tary. Hence, one might proceed by using the quadratic equation to eliminate two of

the three variables, using the two equations containing, say, k to eliminate the other

two variables, and seeking the real roots of the remaining equation: an algebraic

function of k (cf. [12]).
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